Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Expectations of output are quite different however, which can add statistical power to uncovering variation in populations or organisms with more than two expected variants at the same location.

If you happen to be working with a model organism with extensive external data (ESPECIALLY HUMAN), then there are even more sophisticated tools like the Broad Institute's GATK that can improve both sensitivity and specificity of your variant calls.

Example: The CEU Trio from the 1000 Genomes Project

...

We'll return to this example data shortly to demonstrate a much more involved tool, GATK, to do the same steps.

Optional: Mapping Exercise

Let's use Anna's shell script align_bwa.sh to align the fastq files to the hg19 version of the genome, and the python program launcher_creator.py to create the job submission script.

...

Expand
Output
Output
Code Block
login1$ vcfutils.pl qstats test.raw.vcf
QUAL #non-indel #SNPs #transitions #joint ts/tv #joint/#ref #joint/#non-indel
186	1011	1011	757	0	2.9803	0.0000	0.0000	2.9803
142	2036	2036	1441	0	2.4218	0.0000	0.0000	2.0059
122	3091	3091	2156	0	2.3059	0.0000	0.0000	2.1029
109	4177	4177	2925	0	2.3363	0.0000	0.0000	2.4259
99.5	5237	5237	3647	0	2.2937	0.0000	0.0000	2.1361
92	6273	6273	4354	0	2.2689	0.0000	0.0000	2.1489
85.5	7328	7328	5105	0	2.2964	0.0000	0.0000	2.4704
79	8352	8352	5811	0	2.2869	0.0000	0.0000	2.2201
74	9369	9369	6497	0	2.2622	0.0000	0.0000	2.0725
69	10553	10553	7311	0	2.2551	0.0000	0.0000	2.2000
65	11782	11782	8176	0	2.2673	0.0000	0.0000	2.3764
61	13059	13059	9090	0	2.2902	0.0000	0.0000	2.5179
57	14280	14280	9945	0	2.2941	0.0000	0.0000	2.3361
53	15301	15301	10656	0	2.2941	0.0000	0.0000	2.2935
48.8	16323	16323	11347	0	2.2803	0.0000	0.0000	2.0876
45	17460	17460	12122	0	2.2709	0.0000	0.0000	2.1409
41.8	18639	18639	12899	0	2.2472	0.0000	0.0000	1.9328
39.8	19660	19660	13572	0	2.2293	0.0000	0.0000	1.9339
37.8	21013	21013	14496	0	2.2243	0.0000	0.0000	2.1538
35.8	22309	22309	15380	0	2.2197	0.0000	0.0000	2.1456
33.8	23568	23568	16251	0	2.2210	0.0000	0.0000	2.2448
31.8	24846	24846	17101	0	2.2080	0.0000	0.0000	1.9860
29.8	26171	26171	17975	0	2.1931	0.0000	0.0000	1.9379
28	27308	27308	18688	0	2.1680	0.0000	0.0000	1.6816
26	28654	28654	19551	0	2.1478	0.0000	0.0000	1.7867
24	29947	29947	20371	0	2.1273	0.0000	0.0000	1.7336
22	31050	31050	21065	0	2.1097	0.0000	0.0000	1.6968
20	32081	32081	21719	0	2.0960	0.0000	0.0000	1.7347
17.1	33251	33251	22446	0	2.0774	0.0000	0.0000	1.6411
13.2	34447	34447	23238	0	2.0732	0.0000	0.0000	1.9604
10.4	35751	35751	24067	0	2.0598	0.0000	0.0000	1.7453
9.53	36772	36772	24724	0	2.0521	0.0000	0.0000	1.8049
8.65	38023	38023	25539	0	2.0457	0.0000	0.0000	1.8693
7.8	39301	39301	26360	0	2.0369	0.0000	0.0000	1.7965
6.98	40665	40665	27196	0	2.0192	0.0000	0.0000	1.5833
6.2	42394	42394	28243	0	1.9958	0.0000	0.0000	1.5352
5.46	44018	44018	29211	0	1.9728	0.0000	0.0000	1.4756
4.77	45553	45553	30168	0	1.9609	0.0000	0.0000	1.6557
4.13	47020	47020	31081	0	1.9500	0.0000	0.0000	1.6480
3.54	48572	48572	32063	0	1.9422	0.0000	0.0000	1.7228
3.01	50463	50463	33139	0	1.9129	0.0000	0.0000	1.3202

You can also get some quick stats with some linux one-liners on this page; there Here is an honest write-up about the Ts/Tv metric, referencing this 2002 paper by Ebersberger.  Bottom line: between about 2.1 and 2.8 is OK for Ts/Tv (also called Ti/Tv).

You can also get some quick stats with some linux one-liners on this page; there are more thorough analysis programs built to work with vcf's.

...

CAVEAT: If you intend to use the second option, you must make sure you tag your reads with the right RG tag; this can easily be done during the samse or sampe stage of mapping with bwa with the -r option, using samtools merge, with picard tools AddOrReplaceReadGroup command, or with your own perl/python/bash commands. Note that our align_bwa.sh script takes care of this detail for us.

Filtering

On any variant caller you use, there will be an inherent trade-off between sensitivity and specificity. Typically, you would carry forward as much data as practical at each processing step, deferring final judgement until later so you have more information. For example, you might not want to exclude low coverage regions in one sample from your raw data because you may be able to infer a genotype based on family information later.

This typically leads to NGS pipelines that maximize sensitivity, leading to a substantial number of false positives. Filtering after variant calling can be useful to eliminate false positives based on all the data available after numerous analyses.

In the samtools/bcftools world, the vcfutils.pl script provides a means to filter SNPs on many criteria.

Exercises

Explore some filter settings for vcfutils.pl varFilter to see how many SNPs get filtered out, using the linux tool xargs to do a parameter sweep.

Code Block
titleFiltering, counting, and parameter iteration
# First - create a tiny shell script to run vcfutils and take a single parameter:
echo "#\!/bin/bash" > tiny.sh
echo "echo \"Sweeping with vcfutils.pl, min read depth of: \$1\" " >> tiny.sh
echo "vcfutils.pl varFilter -Q 20 -d \$1 test.raw.vcf | grep -v '^#' | wc -l " >> tiny.sh

# Now make it executable
chmod +x tiny.sh

# Use xargs to do a lovely sweep
echo 2 3 4 5 6 7 | xargs -n 1 tiny.sh

...

Code Block
Sweeping with vcfutils.pl, min read depth of: 2
41443
Sweeping with vcfutils.pl, min read depth of: 3
32652
Sweeping with vcfutils.pl, min read depth of: 4
22861
Sweeping with vcfutils.pl, min read depth of: 5
14605
Sweeping with vcfutils.pl, min read depth of: 6
9112
Sweeping with vcfutils.pl, min read depth of: 7
5809
Exercise

Try modifying tiny.sh on your own to sweep through other filter parameters.

Exercise

Use bedtools and some linux built-in commands to compare the single-sample vcf file(s) to the multiple-sample vcf file (you might need module load bedtools unless you've installed that in your .profile). Do the following:

  1. Count the total number of variants called in test.raw.vcf and all.samtools.vcf
  2. Count how many of the SNPS in these two files are common
  3. Calculate the average and maximum quality values for the SNPs that are in test.raw.vcf but NOT in all.samtools.vcf
  4. Calculate the average and maximum quality values for the SNPs that are in test.raw.vcf

...

  1. Investigate grep -c
  2. Try intersectBed and wc
  3. Try subtractBed and some awk
    Note that for intersections and subtractions on structured data like this, you can use the linux join command too.

...

Code Block
titleComparison of single- and multiple-sample vcf files using linux and bedtools
# This command just counts the # of called variants in test.raw.vcf (from individual NA12878)
grep -c -v '^#' test.raw.vcf

# This command just counts the # of called variants in all 3 individuals
grep -c -v '^#' $BI/ngs_course/human_variation/all.samtools.vcf

# Found out how many are common between the two
intersectBed -a test.raw.vcf -b $BI/ngs_course/human_variation/all.samtools.vcf | wc -l

# Take all those that are not in all.samtools.vcf and examine their quality (in field 6 of the vcf file)
subtractBed -a test.raw.vcf -b $BI/ngs_course/human_variation/all.samtools.vcf | \
   awk 'BEGIN {max=0} {sum+=$6; if ($6>max) {max=$6}} END {print "Average qual: "sum/NR "\tMax qual: " max}'

# Look at all the qualities from the NA12878 variants
grep -v '^#' test.raw.vcf | awk 'BEGIN {max=0} {sum+=$6; if ($6>max) {max=$6}} END {print "Average qual: "sum/NR "\tMax qual: " max}'

...

Code Block
titleOutput of comparison of single- and multiple-sample vcf files
login2$ # This command just counts the # of called variants in test.raw.vcf (from individual NA12878)
login2$ grep -c -v '^#' test.raw.vcf
58049
login2$
login2$ # This command just counts the # of called variants in all 3 individuals
login2$ grep -c -v '^#' $BI/ngs_course/human_variation/all.samtools.vcf
80972
login2$
login2$ # Found out how many are common between the two
login2$ intersectBed -a test.raw.vcf -b $BI/ngs_course/human_variation/all.samtools.vcf | wc -l
52039
login2$
login2$ # Take all those that are not in all.samtools.vcf and examine their quality (in field 6 of the vcf file)
login2$ subtractBed -a test.raw.vcf -b $BI/ngs_course/human_variation/all.samtools.vcf | \
>    awk 'BEGIN {max=0} {sum+=$6; if ($6>max) {max=$6}} END {print "Average qual: "sum/NR "\tMax qual: " max}'
Average qual: 8.70595	Max qual: 212
login2$
login2$ # Look at all the qualities from the NA12878 variants
login2$ grep -v '^#' test.raw.vcf | awk 'BEGIN {max=0} {sum+=$6; if ($6>max) {max=$6}} END {print "Average qual: "sum/NR "\tMax qual: " max}'
Average qual: 43.97	Max qual: 225

This data shows that most of the variants that were called on sample NA12878 but are not in the multi-sample variant calls have lower quality.

For major bonus points and a great THANK YOU from Scott, compute the mean and standard deviation of the intersected and subtracted SNPs from NA12878 vs all and then perform a t-test to make sure the differences are statistically significant using only linux command line tools (probably in a shell script). Yes, it's probably easier in Python, Perl, or R.

Other notes on bcftools

bcftools has many other sub-commands such as performing association tests and estimating allele frequency spectrums.

...