Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

The normal acceleration of the train is plotted on the left, while the tangential acceleration is on the right. Notice that the tangential acceleration does not depend on the input angular velocity, but rather the input angular acceleration.

MATLAB Code 

% Wild Wild West Train

% Paramters

    N1 = 6; % Teeth on the first gear

    N2 = 12; % Teeth on the second gear

    R = 2.75; % Turn-Table Radius (in)

% Analyis

    GR = N1/N2; % Gear Ratio

    omega1 = [0:.1:20]; % Input Angular Velocity (RPM)

    alpha1 = [0:.1:20]; % Input Angular Acceleration (RPM/s)

    for i = 1:length(omega1)

        omega2(i) = omega1(i)*GR; % Output Angular Velocity (RPM)

        vel(i) = omega2(i)*(2*pi/60)*R; % Velocity of Train (in/s)

        an(i) = (vel(i)^2)/R; % Normal Acceleration of Train (in/s)

        at(i) = alpha1(i)*(2*pi/60)*R; % Normal Acceleration of Train (in/s)'

    end

figure(1)

    plot (omega1,omega2,'k','LineWidth',2)

    title('Output Angular Velocity Vs. Input Angular Velocity');

    xlabel('Omega1 (RPM)');

    ylabel('Omega2 (RPM)');

figure(2)

    plot (omega1,vel,'k','LineWidth',2)

    title('Train Tangential Velocity Vs. Input Angular Velocity');

    xlabel('Omega1 (RPM)');

    ylabel('Velocity (in/s)');

figure(3)

    plot (omega1,an,'k','LineWidth',2)

    title('Train Normal Acceleration Vs. Input Angular Velocity');

    xlabel('Omega1 (RPM)');

    ylabel('Normal Acceleration (in/s^2)');

figure(4)

    plot (alpha1,at,'k','LineWidth',2)

    title('Train Tangential Acceleration Vs. Input Angular Velocity');

    xlabel('Alpha1 (RPM/s)');