Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

We decided to begin prototyping in SolidWorks with a fourbar mechanism that would give us the motion we wanted to relocate a reversing wheelchair onto a curb. The aim was to have the mechanism vertically elevate and horizontally translate a wheelchair in a continuous, smooth manner. Because we anticipated that the wheelchair user would operate the mechanism most conveniently with the wheel, the fourbar mechanism was designed so that the crank or input link would have full rotational movement, i.e. a Class I Grashof linkage. Taking into account approximate locations and dimensions of the parts of a wheelchair, the relevant linkage lengths were varied until the desired motion was captured. The CAD concept drawings are shown below



With the skeletal design in place, further design in SolidWorks was necessary to integrate the concept with our expected build materials. A rough approximation of a 1:4 wheelchair with the relevant dimensions was 3D printed, and the initial iterations of our mechanism linkages were lasercut in the MakerStudio of the ETC for convenience of prototyping.  

This project had two main prototypes prior to our final presented prototype. Images and a video of the first prototype are shown below. 

...

Part

Price

Quantity

Notes

Status

8 mm retention rings
20From Slider-crank mechanismOrdered; Received
8x16x5 mm bearings
20From Slider-crank mechanismOrdered; Received
Aluminum plate stock (12” x 12” x ¼” plate stock)$30.5118975K142 (McMaster-Carr Part No.)Ordered; Not Received
Aluminum stock (¼” x 1” x 48” bar stock for links) $12.2818975K596 (McMaster-Carr Part No.)Ordered; Received
Rotary shaft 200 mm x 8 mm
2From Slider-crank mechanismOrdered; Received
Rubber lining (1” x 18”) $6.4719023K82 (MacMaster-Carr Part No.)Ordered; Received

...