Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 21 Next »

https://docs.google.com/document/d/1HYayPQ08dvkMsm2hT-L3CzclfgByDKk_uIOOOIWpOWw/edit?usp=sharing

Advait's Midnight Ramble

Rod Selection

Electric's Force Requirements

Mechanical Testing of Composite Materials

F1 Design and Manufacturing

Forum

Tube Stock

Inserts interfaced with Carbon Fiber Tube

Things to test

  • Mechanical Tests

    • Tensile Test- needed for plug

      • How to test it

      • Probably not needed since the push rod will be under constant compression

    • Flexural Test

      • three-point and four-point bend testing according to ISO 14,125, ISO 178, ASTM D 790, and ASTM D 6272

      • parameters for this test are the support span, the speed of the loading, and the maximum deflection for the test

    • Impact Test

    • Compression Test

      • End loading

      • Sheer loading

      • ASTM D 695, ASTM D 3410, and ISO 14,126.

      • information on elastic limit, proportional limit, yield point, yield strength, and compressive strength

  • Strength at high temperatures (Summer)

  • Fatigue Failure?

Plug Testing

  • Adhesive

    • EA E-40HT

    • DP420

    • DP460

    • Loctite - Hysol E‐120HP

      • room temp cure

      • Tensile strength of 41 N/mm^2

      • Aluminum abrasion and acid etched lap shear strength 33 N/mm^2 (4800 psi)

      • 100% strength even at 40 degrees Celsius

  • Tube and metal prep

    • Aluminum etching and Alodine coating to prevent corrosion and increase bond strength

      • West  System 860 Aluminum Etching Kit

      • DuPont Acid Etch and  Alodine solutions

    • Submerge Aluminum in etch solution, then submerge in non-diluted Alodine solution

  • Aluminum stock for insert

    • Check for appropriate lengths

      • Bond length increases linearly with bond strength

    • Gap 0.004 - 0.012 in for hot bonding

    • Gap 0.008 in for cold bonding

    • Carved aluminum, tapped for fitting a bearing insert

    • create shoulder only for grabbing in tensile test

    • In MIT paper, flashbreaker tape was used to add thickness at the end of the insert to create equal spacing and center insert.

Materials

  • x1 45552 CF Tuber (60in)

    • Produces x12 5-in test tubes

Process for Insert Tensile Test

  1. Create Aluminum inserts

    1. 0.004-0.012 in gap

    2. Leave shoulder length for Instron machine to grab

    3. Have a length of about [some] inches that will adhere to the inside of tube

  2. Cut the Carbon Fiber tubes into about 3-5 inch sections

    1. The tubes are 5 feet long, so we can get at least 12 tests from one tube

  3. Prep the surfaces

    1. The aluminum inserts will be sanded, degreased, submerged in etch solution for 3 minutes, then submerged in non-diluted Alodine solution

    2. The CF inner part will just be sanded and degreased

  4. Add Epoxy

    1. We may test mixing the epoxy with small glass beads to properly center the insert, or use of Flashbreaker tape

    2. Slather chosen epoxy on the insert and inner part of CF tube

  5. Insertion

    1. Slowly push insert into tube and let cure for 24 hours.

  6. Testing

    1. After putting the insert into both sides of the tube, attach to Instron machine

    2. Pull until failure

ASTM D 695 (compression test)

ASTM D 3410 

ISO 14,126.

  • No labels