%distances in inches
%input with constant rotational velocity
th = 0:1:360;
rpm = 30; %one second to turn turner one rotation
win = rpm*60/(2*pi); %rad per sec
ain = 0;
%cams (assuming consistent change in radius)
rs = 0.6; %smallest radius
rl = 1.45; %largest radius
rate = (rl-rs)/360;
r = rs:rate:rl;
%penguin head
ax7 = 5.1; %length of axle 7
h = r + ax7; %height from spinning axle
plot(th,h)
title('Position of Penguin Body/Head Over the Turning Radius');
xlabel('turning theta');
ylabel('position of penguin');
(position along the vertical y axis from the turning mechanism axle)
plot(th,v)
title('Velocity of Penguin Body/Head Over the Turning Radius');
xlabel('turning theta');
ylabel('velocity of penguin (in/s');
%constant velocity, therefore no acceleration
%wing tips
wing = 3.1; %length from fulcrum to tip
f = 0.8; %length from fulcrum to 'armpit' hitting wings causing motion
armpit = h - .75; %height of armpit
vap = v;
wwing = vap./f; %rotational velocity of wing
thwmin = -50;
plot(th,wwing)
title('Rotational Velocity of the Wings Over the Turning Radius');
xlabel('turning theta');
ylabel('rotational velocity of the wings (in/s)');
%constant rotational velocity, therefore no rotational acceleration
thw(1) = thwmin;
for i = 2:361
thw(i) = wwing(i)*180/pi*tdelt + thw(i-1); %in/s
end
plot(th,thw)
title('Theta of the Wings Over the Turning Radius');
xlabel('turning theta');
ylabel('theta of the wings (deg)');
%path of wings (tip of the wings)
ax11 = 3.3; %top of igloo to wing fulcrum
wingx = wing.*cosd(thw);
lwingx = -wingx; %left wing
wingy = wing.*sind(thw)+ax11;
plot(wingx,wingy,lwingx, wingy)
axis([-3.2 3.2 0 6.4])
title('Path of the Wings from Igloo Base');
xlabel('x (in.)');
ylabel('y (in.)');