Carbon Fiber Push Rods Research Proposal

Composite-Dynamics Meeting 10/5/2024

Composite Dynamics Stuff Initial Testing Plan

Advait's Midnight Ramble

Rod Selection

Electric's Force Requirements

Mechanical Testing of Composite Materials

F1 Design and Manufacturing

Forum

Rock West Carbon Fiber Push Rod Stock

Inserts interfaced with Carbon Fiber Tube

Things to test

Insert Testing

Adhesive strength

$$\tau \cdot A= F_{max}$$
Lap Shear Strength x Surfaces Area = Max Force

To determine the length of our insert:

$$L_{ength} = \frac{F_{max}}{\pi d \tau}$$

Assuming we need a max Force of [sum] newtons and a diameter of 0.25 inches, Our minimum length is [something] millimeters

https://utexas-my.sharepoint.com/:x:/g/personal/jes7564_my_utexas_edu/ESpZNob0GmdNnU2Lr0FIShwBwQgH5VS_XbOUQR9JOKWDLQ?e=12xhe3

The 0.25 in rod end is already an inch long so the minimum depth of inert is 1 inch.

Materials

Process for Insert Tensile Test

  1. Create Aluminum inserts

    1. 0.004-0.012 in gap

    2. Leave shoulder length for Instron machine to grab

    3. Have a length of about [some] inches that will adhere to the inside of tube

  2. Cut the Carbon Fiber tubes into about 3-5 inch sections

    1. The tubes are 5 feet long, so we can get at least 12 tests from one tube

  3. Prep the surfaces

    1. The aluminum inserts will be sanded, degreased, submerged in etch solution for 3 minutes, then submerged in non-diluted Alodine solution

    2. The CF inner part will just be sanded and degreased

  4. Add Epoxy

    1. We may test mixing the epoxy with small glass beads to properly center the insert, or use of Flashbreaker tape

    2. Slather chosen epoxy on the insert and inner part of CF tube

  5. Insertion

    1. Slowly push insert into tube and let cure for 24 hours.

  6. Testing

    1. After putting the insert into both sides of the tube, attach to Instron machine

    2. Pull until failure

ASTM D 695 (compression test)

ASTM D 3410 

ISO 14,126.