...
Code Block | ||||
---|---|---|---|---|
| ||||
########## # SECTION 3 -- controlling the prompt # for NGS course if [ -n "$PS1" ]; then PS1='ls5:\w$ ' fi |
...
The first thing you'll want to do is transfer your sequencing data to TACC so you can process it there. Here is an overview of the different storage areas at TACC, their characteristics, and Linux commands generally used to perform the data transfers:
- wget – retrieves the contents of an Internet URL
- cp – copies files located on any local file system
- scp – copies files to/from a remote system
- rsync – copies files on either local or remote systems
...
Local file systems
There are 3 local file systems available on any TACC compute cluster (Lonestar5, stampede2, etc.), each with different characteristics. All these local file systems are very fast and set up for parallel I/O (Lustre file system).
On ls5 these local file systems have the following characteristics:
...
When you first login, the system gives you information about disk quota and your compute allocation quota:
Code Block |
---|
--------------------- Project balances for user abattenh ----------------------
| Name Avail SUs Expires | Name Avail SUs Expires |
| CancerGenetics 4856 2018-09-30 | A-cm10 1096 2018-12-31 |
| UT-2015-05-18 2100 2019-03-31 | genomeAnalysis 2500 2019-03-31 |
------------------------ Disk quotas for user abattenh -------------------------
| Disk Usage (GB) Limit %Used File Usage Limit %Used |
| /home1 0.0 10.0 0.12 91 1000000 0.01 |
| /work 538.5 1024.0 52.59 61053 3000000 2.04 |
| /scratch 3725.9 0.0 0.00 4137 0 0.00 |
------------------------------------------------------------------------------- |
changing TACC file systems
When you first login, you start in your home directory. Use these commands to change to your other file systems. Notice how your command prompt helpfully changes to show your location.
Code Block | ||||
---|---|---|---|---|
| ||||
cdw
cds
cd |
Tip |
---|
The cd (change directory) command with no arguments takes you to your home directory on any Linux/Unix system. The cdw and cds commands are specific to the TACC environment. |
Stockyard (shared Work)
TACC compute clusters now share a common Work file system called stockyard. So files in your Work area do not have to be copied, for example from ls5 to stampede2 – they can be accessed directly from either cluster.
Note that there are two environment variables pertaining to the shared Work area:
- $STOCKYARD - This refers to the root of your shared Work area
- e.g. /work/01063/abattenh
- $WORK - Refers to a sub-directory of the shared Work area that is different for different clusters, e.g.:
- /work/01063/abattenh/lonestar on ls5
- /work/01063/abattenh/stampede2 on stampede2
A mechanism for purchasing larger stockyard allocations (above the 1 TB basic quota) are in development.
The UT Austin BioInformatics Team, a loose group of researchers, maintains a common directory area on stockyard.
Code Block | ||||
---|---|---|---|---|
| ||||
ls /work/projects/BioITeam |
Files we will use in this course are in a sub-directory there:
Code Block | ||||
---|---|---|---|---|
| ||||
ls /work/projects/BioITeam/projects/courses/Core_NGS_Tools |
Corral
corral is a gigantic (multiple PB) storage system (spinning disk) where researchers can store data. UT researchers may request up to 5 TB of corral storage through the normal TACC allocation request process. Additional space on corral can be rented for ~$85/TB/year.
The UT/Austin BioInformatics Team also has an older, common directory area on corral.
Code Block | ||||
---|---|---|---|---|
| ||||
ls /corral-repl/utexas/BioITeam |
A couple of things to keep in mind regarding corral:
- corral is a great place to store data in between analyses.
- Store your permanent, original sequence data on corral
- Copy the data you want to work with from corral to $SCRATCH
- Run your analyses (batch jobs)
- Copy your results back to corral
- Occasionally corral can become unavailable. This can cause any command to hang that tries to access corral data!
Ranch
ranch is a gigantic (multiple PB) tape archive system where researchers can archive data. UT researchers may request large (multi-TB) ranch storage allocations through the normal TACC allocation request process.
There is currently no charge for ranch storage. However, since the data is stored on tape it is not immediately available – robots find and mount appropriate tapes when the data is requested, and it can take minutes to hours for the data to appear on disk. (The metadata about your data – the directory structures and file names – is always accessible, but the actual data in the files is not on disk until "staged". See the ranch user guide for more information: https://www.tacc.utexas.edu/user-services/user-guides/ranch-user-guide.
Once that data is staged to the ranch disk it can be copied to other places. However, the ranch file system is not mounted as a local file system from the stampede2 or ls5 clusters. So remote copy commands are needed to copy data to and from ranch (e.g. scp, rsync).
Staging your data
So, your sequencing center has some data for you. They may send you a list of web or FTP links to use to download the data.
The first task is to get this sequencing data to a permanent storage area. This should not be your laptop or one of the TACC local file systems! corral is a great place for it, or a server maintained by your lab or company.
We're going to pretend – just for the sake of this class – that your permanent storage area is in your TACC work area. Execute these commands to make your "archive" directory and some sub-directories.
Code Block | ||||
---|---|---|---|---|
| ||||
mkdir -p $WORK/archive/original/2018_05.core_ngs |
Here's an example of a "best practice". Wherever your permanent storage area is, it should have a rational sub-directory structure that reflects its contents. It's easy to process a few NGS datasets, but when they start multiplying like tribbles, good organization and naming conventions will be the only thing standing between you and utter chaos!
For example:
original
– for original sequencing data (compressed fastq files)- sub-directories named by
year_month.<project_name>
- sub-directories named by
aligned
– for alignment artifacts (bam files, etc)- sub-directories named by
year_month.<project
_
name>
- sub-directories named by
analysis
– further downstream analysis- reasonably named subdirectories, often by project
genome
– reference genomes and other annotation files used in alignment and analysis- sub-directories for different reference genomes
- e.g.
ucsc/hg19
,ucsc/sacCer3
,mirbase/v20
code
– for scripts and programs you and others in your organization write- ideally maintained in a version control system such as git, subversion or cvs.
- easiest to name sub-directories for people.
Download from a link – wget
Well, you don't have a desktop at TACC to "Save as" to, so what to do with a link? The wget program knows how to access web URLs such as http, https and ftp.
...
wget
Get ready to run wget from the directory where you want to put the data. Don't press Enter after the wget command – just put a space after it.
Code Block | ||||
---|---|---|---|---|
| ||||
cd $WORK/archive/original/2018_05.core_ngs
wget |
Here are two web links:
- http://web.corral.tacc.utexas.edu/BioITeam/yeast_stuff/Sample_Yeast_L005_R1.cat.fastq.gz
- http://web.corral.tacc.utexas.edu/BioITeam/yeast_stuff/Sample_Yeast_L005_R2.cat.fastq.gz
Right-click (Windows) or Control+click (Mac) on the 1st link in your browser, then select "Copy link location" from the menu. Now go back to your Terminal. Put your cursor after the space following the wget command then either right-click (Windows), or Paste (Command-V on Mac, Control-V on Windows). The command line to be executed should now look like this:
Code Block | ||||
---|---|---|---|---|
| ||||
wget http://web.corral.tacc.utexas.edu/BioITeam/yeast_stuff/Sample_Yeast_L005_R1.cat.fastq.gz |
Now press Enter to get the command going. Repeat for the 2nd link. Check that you now see the two files (ls).
Copy from a corral location - cp or rsync
Suppose you have a corral allocation where your organization keeps its data, and that the sequencing data has been downloaded there. You can use various Linux commands to copy the data locally from there to your $SCRATCH area.
cp
The cp command copies one or more files from a local source to a local destination. It has the most common form:
cp [options] <source file 1> <source file 2> ... <destination directory>/
Make a directory in your scratch area and copy a single file to it. The trailing slash ( / ) on the destination says it is a directory.
Code Block | ||||
---|---|---|---|---|
| ||||
mkdir -p $SCRATCH/data/test1
cp /work/projects/BioITeam/projects/courses/Core_NGS_Tools/misc/small.fq $SCRATCH/data/test1/
ls $SCRATCH/data/test1
# or..
mkdir -p ~/scratch/data/test1
cd ~/scratch/data/test1
cp /work/projects/BioITeam/projects/courses/Core_NGS_Tools/misc/small.fq .
ls |
Copy an entire directory to your scratch area. The -r argument says "recursive".
Code Block | ||||
---|---|---|---|---|
| ||||
cds
cd data
cp -r /work/projects/BioITeam/projects/courses/Core_NGS_Tools/general/ general/ |
Exercise: What files were copied over?
Expand | ||
---|---|---|
| ||
ls general |
Expand | ||
---|---|---|
| ||
BEDTools-User-Manual.v4.pdf SAM1.pdf SAM1.v1.4.pdf |
local rsync
...
rsync is a very complicated program, with many options (http://rsync.samba.org/ftp/rsync/rsync.html). However, if you use the recipe shown here for directories, it's hard to go wrong:
rsync -ptlrvP local/path/to/source_directory/ local/path/to/destination_directory/
Both the source and target directories are local (in some file system accessible directly from ls5). Either full or relative path syntax can be used for both. The -ptlrvP options above stand for:
- -p means preserve file permissions
- -t means preserve file times
- -l means copy symbolic links as links
- -r means recursively copy sub-directories
- -v means verbose
- -P means show Progress.
Since these are all single-character options, they can be combined after one option prefix dash ( - ). You could also use options -arvP, where -a means "archive mode", which implies the -ptl options.
Tip | ||
---|---|---|
| ||
The trailing slash ( / ) on the source and destination directories are very important! rsync will create the last directory level for you, but earlier levels must already exist. |
Code Block | ||||
---|---|---|---|---|
| ||||
cds
rsync -ptlrvP /work/projects/BioITeam/projects/courses/Core_NGS_Tools/ucsc_custom_tracks/ data/custom_tracks/ |
Exercise: What files were copied over?
Expand | ||
---|---|---|
| ||
ls $SCRATCH/data/custom_tracks |
Now repeat the rsync and see the difference.
Use the Up arrow to retrieve the previous command from your bash command history.
Code Block | ||
---|---|---|
| ||
rsync -ptlrvP /work/projects/BioITeam/projects/courses/Core_NGS_Tools/ucsc_custom_tracks/ data/custom_tracks/ |
Tip |
---|
The bash shell has several convenient line editing features:
|
Copy from a remote computer - scp or rsync
Provided that the remote computer is running Linux and you have ssh access to it, you can use various Linux commands to copy data over a secure connection.
The good news is that once you have learned cp and local rsync, remote secure copy (scp) and remote rsync are very similar!
scp
The scp command copies one or more files from a source to a destination, where either source or destination, or both, can be a remote path.
Remote paths are similar to local paths, but have user and host information first:
user_name@full.host.name:/full/path/to/directory/or/file
– or –
user_name@full.host.name:~/path/relative/to/home/directory
Copy a single file to your $SCRATCH/data/test1 directory from the server named gapdh.icmb.utexas.edu, using the user account corengstools. When prompted for a password, use the one we have written on the board (or copy/paste the password from this file: $CORENGS/tacc/gapdh_access.txt)
Code Block | ||
---|---|---|
| ||
cds
cat $CORENGS/tacc/gapdh_access.txt
scp corengstools@gapdh.icmb.utexas.edu:~/custom_tracks/progeria_ctcf.vcf.gz ./data/test1/
ls ./data/test1 |
Notes:
- The 1st time you access a new host the SSH security prompt will appear
- You will be prompted for your remote host password
- The -r recursive argument works for scp also, just like for cp
remote rsync
rsync can be run just like before, but using the remote-host syntax. Here we use two tricks:
- The tilde ( ~ ) at the start of the path means "relative to my home directory"
- We traverse through the BioITeam symbolic link created in your home directory earlier.
- We use the same tilde ( ~ ) in the destination to traverse the scratch symbolic link in your home directory.
Don't forget to change userid below.
Code Block | ||||
---|---|---|---|---|
| ||||
rsync -ptlrvP corengstools@gapdh.icmb.utexas.edu:~/custom_tracks/ ~/scratch/data/custom_tracks/ |
Exercise: Was anything copied?
Expand | ||
---|---|---|
| ||
No, because all the source files were already present in the destination directory (you copied the same files earlier) with the same timestamps and file checksums. So rsync had nothing to do! |
Scavenger hunt exercise
Here's a fun scavenger hunt for more practice. Issue the following commands to get practice what you've learned so far:
Expand | ||
---|---|---|
| ||
Hit Tab Tab as much as possible to save typing! |
To get started:
Code Block | ||
---|---|---|
| ||
cd
cp -r /work/projects/BioITeam/projects/courses/Core_NGS_Tools/linuxpractice/what what
cd what
cat readme |
Where are you when you're all done?
Expand | ||
---|---|---|
| ||
|
step by step answers
Expand | |||||
---|---|---|---|---|---|
| |||||
From inside your ~/what directory:
|
Expand | |||||
---|---|---|---|---|---|
| |||||
From inside your ~/what/starts directory:
|
Expand | |||||
---|---|---|---|---|---|
| |||||
From inside your ~/what/starts/here directory:
|
Expand | |||||
---|---|---|---|---|---|
| |||||
From inside your ~/what/starts/here/changes directory:
|