Getting to a remote computer
The Terminal window
- Macs and Linux have a Terminal program built-in – find it now on your computer
- Windows 10 or later has ssh and scp in Command Prompt or PowerShell (may require latest Windows updates)
- Open the Start menu → Search for Command
- Open the Start menu → Search for Command
From now on, when we refer to "Terminal", it is either the Mac/Linux Terminal program, Windows Command Prompt or PowerShell, or the PuTTY program.
SSH
ssh is an executable program that runs on your local computer and allows you to connect securely to a remote computer. We're going to use ssh to access the Lonestar6 compute cluster at TACC, where the remote host name is ls6.tacc.utexas.edu.
In your local Terminal window:
ssh <your_TACC_userID>@ls6.tacc.utexas.edu # For example: ssh abattenh@ls6.tacc.utexas.edu
- Answer yes to the SSH security question prompt
- Enter the password associated with your TACC account
- Wait for your 2-factor authentication code to arrive via SMS or app, then type it in
The bash shell
You're now at a command line! It looks as if you're running directly on the remote computer, but really there are two programs communicating:
- your local Terminal
- the remote Shell
There are many shell programs available in Linux, but the default is bash (Bourne-again shell).
The Terminal is pretty "dumb" – just sending what you type over its secure sockets layer (SSL) connection to TACC, then displaying the text sent back by the shell. The real work is being done on the remote computer, by programs called by the bash shell.
The bash command-line environment is extremely powerful, but also complex and unforgiving – a one-character mistake can make all the difference between a command that works and one that doesn't!
In spite of the hurdles, learning to get around the Linux command line will pay substantial dividends. A good place to start is with our Linux fundamentals wiki page.
Setting up your environment
Create some directories symbolic links
First create a few directories and links we will use (more on these later).
You can copy and paste these lines from the code block below into your Terminal window. Just make sure you hit Enter after the last line.
Create some symbolic links that will come in handy later:
cd # makes your Home directory the "current directory" ln -s -f $SCRATCH scratch ln -s -f $WORK work ln -s -f /work/projects/BioITeam/projects/courses/Core_NGS_Tools CoreNGS
Symbolic links (a.k.a. symlinks) are "pointers" to files or directories elsewhere in the file system hierarchy. You can almost always treat a symlink as if it is the actual file or directory.
$WORK and $SCRATCH are TACC environment variables that refer to your Work and Scratch file system areas. They are like variables in other programming languages, in that they have a name (WORK, SCRATCH) and hold a value ($WORK, $SCRATCH) To see the value of an environment variable, use the echo command:
echo $SCRATCH
Set up a $HOME/local/bin directory and link several scripts there that we will use in the class.
mkdir -p ~/local/bin cd ~/local/bin ln -s -f /work/projects/BioITeam/common/bin/launcher_creator.py ln -s -f /work/projects/BioITeam/common/script/launcher_maker.py
The tilde ( ~ ) character
The tilde character ( ~ ) is a pathname shortcut that means "Home directory". We'll see more of it later.
$HOME is an environment variable set by TACC that also refers to your Home area directory.
Setup your login profile (~/.bashrc)
Now execute the lines below to set up a login script, called .bashrc
When you login via an interactive shell, a well-known script is executed to establish your favorite environment settings. We've set up a common login script for you to start with that will help you know where you are in the file system and make it easier to access some of our shared resources. To set it up, perform the steps below:
If you already have a .bashrc set up, make a backup copy first.
cd cp .bashrc .bashrc.beforeNGS
You can restore your original login script after this class is over.
cd cp /work/projects/BioITeam/projects/courses/Core_NGS_Tools/tacc/bashrc.corengs.ls6 .bashrc chmod 600 .bashrc
Since .bashrc is executed when you login, to ensure it is set up properly you should first log off ls6 like this:
exit
Then log back in to ls6.tacc.utexas.edu. This time your .bashrc will be executed and you should see a new shell prompt:
ls6:~$
The great thing about this prompt is that it always tells you where you are, which avoids having to issue the pwd (present working directory) command all the time. Execute these commands to see how the prompt reflects your current directory.
mkdir -p ~/tmp/a/b/c cd ~/tmp/a/b/c # Your prompt should look like this: ls6:~/tmp/a/b/c$
The prompt now tells you you are in the c sub-directory of the b sub-directory of the a sub-directory of the tmp sub-directory of your Home directory ( ~ ).
So why don't you see the .bashrc file you copied to your home directory? Because all files starting with a period (dot files) are hidden by default. To see them add the -a (all) option to ls:
cd ls -a
To see even more detail, including file type and permissions and symbolic link targets, add the -l (long listing) option:
ls -la
ll alias
Your new ~/.bashrc file defines a ll alias command, so when you type ll it is short for ls -la.
Details about your login script
We list the contents of your .bashrc login script to the Terminal with the cat (concatenate files) command. cat simply reads a file and writes each line of content to standard output (here, your Terminal):
cd cat .bashrc # or for larger files... more .bashrc
Don't use cat for large files
You'll see the following (you may need to scroll up a bit to see the beginning):
#!/bin/bash # TACC startup script: ~/.bashrc version 2.1 -- 12/17/2013 # This file is NOT automatically sourced for login shells. # Your ~/.profile can and should "source" this file. # Note neither ~/.profile nor ~/.bashrc are sourced automatically # by bash scripts. # In a parallel mpi job, this file (~/.bashrc) is sourced on every # node so it is important that actions here not tax the file system. # Each nodes' environment during an MPI job has ENVIRONMENT set to # "BATCH" and the prompt variable PS1 empty. ################################################################# # Optional Startup Script tracking. Normally DBG_ECHO does nothing if [ -n "$SHELL_STARTUP_DEBUG" ]; then DBG_ECHO "${DBG_INDENT}~/.bashrc{"; fi ########## # SECTION 1 -- modules if [ -z "$__BASHRC_SOURCED__" -a "$ENVIRONMENT" != BATCH ]; then export __BASHRC_SOURCED__=1 module load launcher fi ############ # SECTION 2 -- environment variables if [ -z "$__PERSONAL_PATH__" ]; then export __PERSONAL_PATH__=1 export PATH=.:$HOME/local/bin:$PATH fi # For better colors using a dark background terminal, un-comment this line: #export LS_COLORS=$LS_COLORS:'di=1;33:fi=01:ln=01;36:' # For better colors using a white background terminal, un-comment this line: #export LS_COLORS=$LS_COLORS:'di=1;34:fi=01:ln=01;36:' export BIWORK=/work/projects/BioITeam export CORENGS=$BIWORK/projects/courses/Core_NGS_Tools export BI=/corral-repl/utexas/BioITeam export ALLOCATION=OTH21164 # For ls6 Group is G-824651 ##export ALLOCATION=UT-2015-05-18 # For stampede2 Group is G-816696 ########## # SECTION 3 -- controlling the prompt if [ -n "$PS1" ]; then PS1='ls6:\w$ '; fi ########## # SECTION 4 -- Umask and aliases #alias ls="ls --color=always" alias ll="ls -la" alias lah="ls -lah" alias lc="wc -l" alias hexdump='od -A x -t x1z -v' umask 002 ########## # Optional Startup Script tracking if [ -n "$SHELL_STARTUP_DEBUG" ]; then DBG_ECHO "${DBG_INDENT}}"; fi
So what does this login script do? A lot! Let's look at just a few of them.
the "she-bang"
The first line is the she-bang. Even though the expression is inside a shell comment (denoted by the # character), it tells the shell (bash) what program should execute this file – in this case, bash itself.
#!/bin/bash
environment variables
The login script also sets an environment variable $BIWORK to point to the shared directory /work/projects/BioITeam, and another environment variable $CORENGS to point to the specific sub-directory for our class.
export BIWORK=/work/projects/BioITeam export CORENGS=$BIWORK/projects/courses/Core_NGS_Tools
Environment variables are like variables in a programming language like python or perl (in fact bash is a complete programming language). They have a name (like BIWORK above) and a value (the value of $BIWORK is the pathname /work/projects/BioITeam). Read more about environment variables here: More on environment variables.
shell completion
You can use these environment variables to shorten typing, for example, to look at the contents of the shared /work/projects/BioITeam directory as shown below, using the magic Tab key to perform shell completion.
Important Tip -- the Tab key is your BFF!
The Tab key is one of your best friends in Linux. Hitting it invokes shell completion, which is as close to magic as it gets!
- Tab once will expand the current command line contents as far as it can unambiguously.
- if nothing shows up, there is no unambiguous match
- Tab twice will give you a list of everything the shell finds matching the current command line.
- you then decide where to go next
# hit Tab once after typing $BIWORK/ to expand the environment variable ls $BIWORK/ # now hit Tab twice to see the contents of the directory ls /work/projects/BioITeam/ # type "pr" and hit Tab again ls /work/projects/BioITeam/pr # type "co" and hit Tab again ls /work/projects/BioITeam/projects/co # type "Co" and hit Tab again ls /work/projects/BioITeam/projects/courses/Co # your command line should now look like this ls /work/projects/BioITeam/projects/courses/Core_NGS_Tools/ # now type "mi" and one Tab ls /work/projects/BioITeam/projects/courses/Core_NGS_Tools/mi # your command line should now look like this ls /work/projects/BioITeam/projects/courses/Core_NGS_Tools/misc/ # now hit Tab once # the shell expands as far as it can unambiguously, # so your command line should look like this ls /work/projects/BioITeam/projects/courses/Core_NGS_Tools/misc/small # now hit Tab twice # You should see 3 filenames, all starting with "small" # small.bam small.fq small2.fq # type a period (".") then hit Tab twice again # You're narrowing down the choices -- you should see two filenames ls /work/projects/BioITeam/projects/courses/Core_NGS_Tools/misc/small # small.bam small.fq # finally, type "f" then hit Tab again. It should complete to this: ls /work/projects/BioITeam/projects/courses/Core_NGS_Tools/misc/small.fq
extending the $PATH
When you type a command name the shell has to have some way of finding what program to run. The list of places (directories) where the shell looks is stored in the $PATH environment variable. You can see the entire list of locations by doing this:
echo $PATH
As you can see, there are a lot of locations on the $PATH. That's because when you load modules at TACC (such as the module load lines in the common login script), that makes the programs available to you by putting their installation directories on your $PATH. We'll learn more about modules later.
Here's how the common login script adds your $HOME/local/bin directory to the location list – recall that's where we linked several useful scripts – along with a special dot character ( . ) that means "here", or "whatever the current directory is". In the statement below, colon ( : ) separates directories in the list.
export PATH=.:$HOME/local/bin:$PATH
setting up the friendly command prompt
The complicated looking if statement in SECTION 3 of your .bashrc sets up a friendly shell prompt that shows the current working directory. This is done by setting the special PS1 environment variable and including a special \w directive that the shell knows means "current directory".
########## # SECTION 3 -- controlling the prompt if [ -n "$PS1" ]; then PS1='ls6:\w$ '; fi