%Peak-a-Bevo Robotics_Project_V3
%Lila Bernhardt
clc; clear all; close all;
%Kinematic Analysis using a 4-Bar Crank Slider Approximation
%Origin:
Ox = 4;
Oy = 4;
%Variables:
a=1.6;
b=6.7;
ci=4.5;
d=9.6;
Theta1=95.6;
k = 6.2;
f = 9.2;
Theta6 = 102.5;
%Initial Condition: Solve for Theta 3 and Theta 4 at Theta 2 = 0
Theta2i = 0;
[T1i,T2i,T3i,T4_i] = fourbarpos(a, b, ci, d, Theta1, Theta2i, -1);
Theta4i = T4_i + 180; %T_4 is supplementary angle of Theta0
bx=b*cosd(T3i);
L1 = bx + a;
L2 = L1 - d*cosd(Theta1);
%Position analysis of Theta 3, Theta 4, and c with input of Theta 2 = [0, 360]
for i=1:360
T2(i) = i;
T1(i) = Theta1;
T3(i) = acosd((L1-a*cosd(T2(i)))/(b));
T4(i) = atand( (d*sind(T1(i)) - b*sind(T3(i)) - a*sind(T2(i)))/ (-L2) )+180;
c(i) = -L2/cosd(T4(i));
end
%Plot Theta3 Theta4
figure(1)
grid on
subplot(2,1,1);
sgtitle('Theta 3 and Theta 4')
plot(T3, 'g')
grid on
xlim([0 360])
ylim([50 90])
xlabel("Theta 2 (degrees)")
ylabel("Theta 3 (degrees)")
subplot(2,1,2);
plot(T4, 'r')
grid on
xlim([0 360])
xlabel("Theta 2 (degrees)")
ylabel("Theta 4 (degrees)")
hold off
for i=1:360
Hy(i) = a*sind(T2(i)) +b*sind(T3(i)) + k*sind(T4(i)) +3 + Oy;
Py(i) = a*sind(T2(i)) +b*sind(T3(i)) + 1.5*sind(T4(i)) + Oy;
T5(i) = atand((13-Py(i))/1.2);
f(i) = 1.2/cosd(T5(i));
Ay(i) = Py(i) + 6.5*sind(T5(i) + 25);
Ax(i) = .6 + 6.5*cosd(T5(i) + 25);
end
figure(2)
plot(Hy)
hold on
plot(Ay)
legend('Head', 'Hands')
grid on
title('Vertical Movement of Head and Hands')
xlabel("Theta 2 (degrees)")
ylabel("y-position (cm)")
xlim([0 360])
ylim([10 19])
figure(3)
plot(Ax)
title('Horizontal Movement of Hands')
xlabel("Theta 2 (degrees)")
ylabel("x-position (cm)")
grid on
xlim([0 360])
Welcome to the University Wiki Service! Please use your IID (yourEID@eid.utexas.edu) when prompted for your email address during login or click here to enter your EID. If you are experiencing any issues loading content on pages, please try these steps to clear your browser cache.